We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Structural and functional insight of New Delhi Metallo β-lactamase-1 variants

    Sidra Khan

    Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202 002, UP, India

    ,
    Abid Ali

    Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202 002, UP, India

    &
    Asad U Khan

    *Author for correspondence: Tel.: +91 98 3702 1912; Fax: +91 571 2721776;

    E-mail Address: asad.k@rediffmail.com

    Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202 002, UP, India

    Published Online:https://doi.org/10.4155/fmc-2017-0143

    New Delhi Metallo β-lactamase-1 (NDM-1) is a member of the Metallo-β-lactamase family, capable of catalyzing the hydrolysis of all β-lactam antibiotics. The rapid dissemination of NDM producers, ‘superbugs’, has become a worldwide concern to health workers. Seventeen different variants of NDM have been reported so far, across the world. These variants varied in their sequences either by single or multiple amino acid substitutions. This review summarizes the crystal structure of NDM and provides a comparative analysis of all variants. Moreover, we have for the first time highlighted the role of α-helix, β-sheet and loop structures of NDM enzyme, having different mutations occurred in these regions. The effect of these substitutions on its structure and functional aspect has to be thoroughly understood to design effective inhibitors in future.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Feng H, Ding J, Zhu D et al. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J. Am. Chem. Soc. 136(42), 14694–14697 (2014).
    • 2 Toleman MA, Bennett PM, Walsh TR. Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. J. Antimicrob. Chemother. 58(1), 1–6 (2006).
    • 3 Saini A, Bansa R. Insights on the structural characteristics of NDM-1: the journey so far. Adv. Biol. Chem. 2, 323–334 (2012).
    • 4 Wilke MS, Lovering AL, Strynadka NC. β-lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol. 8(5), 525–533 (2005).
    • 5 Chiou J, Leung TY, Chen S. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Antimicrob. Agents Chemother. 58(9), 5372–5378 (2014).
    • 6 Kim Y, Cunningham MA, Mire J, Tesar C, Sacchettini J, Joachimiak A. NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. FASEB J. 27(5), 1917–1927 (2013).
    • 7 Hammoudi D, Moubareck CA, Sarkis DK. How to detect carbapenemase producers? A literature review of phenotypic and molecular methods. J. Microbiol. Methods 107, 106–118 (2014).
    • 8 Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20(3), 440–458 (2007).
    • 9 Yang H, Aitha M, Hetrick AM, Richmond TK, Tierney DL, Crowder MW. Mechanistic and spectroscopic studies of metallo-β-lactamase NDM-1. Biochemistry 51(18), 3839–3847 (2012).
    • 10 Kim Y, Tesar C, Mire J et al. Structure of apo- and monometalated forms of NDM-1 – a highly potent carbapenem-hydrolyzing metallo-β-lactamase. PLoS ONE 6, e24621 (2011). •• Gives a detailed insight of the crystal structure of NDM-1 and the important residues that make up the structure.
    • 11 Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2(5), 501–512 (2007).
    • 12 Yong D, Toleman MA, Giske CG et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1 and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53(12), 5046–5054 (2009). •• First reported and characterized blaNDM-1 gene.
    • 13 Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM. A standard numbering scheme for the Class A β-lactamases. Biochem. J. 276, 269–270 (1991).
    • 14 Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39(6), 1211–1233 (1995).
    • 15 Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: a molecular, biological and epidemiological study. Lancet Infect. Dis. 10(9), 597–602 (2010).
    • 16 Bonnin RA, Poirel L, Carattoli A, Nordmann P. Characterization of an IncFII plasmid encoding NDM-1 from Escherichia coli ST131. PloS ONE 7, e34 752 (2012).
    • 17 Lahey clinic. ß-lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. www.lahey.org/studies/.
    • 18 Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J. Antimicrob. Chemother. 66(6), 1260–1262 (2011).
    • 19 Tada T, Miyoshi-Akiyama T, Shimada K, Kirikae T. Biochemical analysis of metallo-β-lactamase NDM-3 from a multidrug-resistant Escherichia coli strain isolated in Japan. Antimicrob. Agents Chemother. 58(6), 3538–3540 (2014).
    • 20 Nordmann P, Boulanger AE, Poirel L. NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrob. Agents Chemother. 56(4), 2184–2186 (2012).
    • 21 Hornsey M, Phee L, Wareham DW. A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 55(12), 5952–5954 (2011).
    • 22 Williamson DA, Sidjabat HE, Freeman JT et al. Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. Int. J. Antimicrob. Agents 39(6), 529–533 (2012).
    • 23 Göttig S, Hamprecht AG, Christ S, Kempf VA, Wichelhaus TA. Detection of NDM-7 in Germany, a new variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity. J. Antimicrob. Chemother. 68(8), 1737–1740 (2013).
    • 24 Tada T, Miyoshi-Akiyama T, Dahal RK et al. NDM-8 metallo-β-lactamase in a multidrug-resistant Escherichia coli strain isolated in Nepal. Antimicrob. Agents Chemother. 57(5), 2394–2396 (2013).
    • 25 Wang X, Li H, Zhao C et al. Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. Int. J. Antimicrob. Agents 44(1), 90–101 (2014).
    • 26 Khajuria A, Praharaj AK, Kumar M, Grover N. Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. Indian J. Med. Microbiol. 34(1), 121–123 (2016).
    • 27 Khan AU, Ali A, Srivastava G, Sharma A. Potential inhibitors designed against NDM-1 type metallo-β-lactamases: an attempt to enhance efficacies of antibiotics against multidrug-resistant bacteria. Sci. Rep. 7(1), 9207 (2017).
    • 28 Tada T, Shrestha B, Miyoshi-Akiyama T et al. NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother. 58(10), 6302–6305 (2014).
    • 29 Shrestha B, Tada T, Miyoshi-Akiyama T et al. Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob. Agents Chemother. 59(9), 5847–5850 (2015).
    • 30 Zou D, Huang Y, Zhao X et al. A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese hospital possesses increased enzymatic activity against carbapenems. Antimicrob. Agents Chemother. 59(4), 2450–2453 (2015).
    • 31 Liu Z, Wang Y, Walsh TR et al. Plasmid-mediated novel blaNDM-17 gene encoding a carbapenemase with enhanced activity in a ST48 Escherichia coli strain. Antimicrob. Agents Chemother. 61(5), pii:AAC.02233–16 (2017).
    • 32 Brown MC, Verma D, Russell C, Jacobs DJ, Livesay DR. A case study comparing quantitative stability–flexibility relationships across five metallo-β-lactamases highlighting differences within NDM-1. Methods Mol. Biol. 1084, 227–238 (2014).
    • 33 Khan AU, Nordmann P. NDM-1-producing Enterobacter cloacae and Klebsiella pneumoniae from diabetic foot ulcers in India. J. Med. Microbiol. 61(Pt 3), 454–456 (2012).
    • 34 Zheng B, Tan S, Gao J et al. An unexpected similarity between antibiotic-resistant NDM-1 and β-lactamase II from Erythrobacter litoralis. Protein Cell 2(3), 250–258 (2011).
    • 35 Thomas PW, Zheng M, Wu S et al. Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry 50(46), 10102–10113 (2011). • Talks about the NDM-1's preference of substrates and the effect of zinc concentration on hydrolysis rates.
    • 36 Guo Y, Wang J, Niu G et al. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell 2(5), 384–394 (2011).
    • 37 Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol. 74(12), 1686–1701 (2007).
    • 38 Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 25(8), 2574–2582 (2011). • The crystal structure of NDM-1 in complex with hydrolysed ampicillin at 1.3 Å resolution is presented here with the proposed mechanism of catalysis.
    • 39 King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 20(9), 1484–1491 (2011). • Crystal structure of uncomplexed NDM-1 at 2.1 Å resolution with a proposed mechanism of antibiotic resistance.
    • 40 Chen J, Chen H, Shi Y et al. Probing the effect of the nonactive-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies and molecular dynamics simulations. PLoS ONE 8, e820–80 (2013).
    • 41 Green VL, Verma A, Owens RJ, Phillips SE, Carr SB. Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67(Pt 10), 1160–1164 (2011).
    • 42 Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70(2), 296–316 (2006).
    • 43 Concha NO, Rasmussen BA, Bush K, Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure 4(7), 823–836 (1996).
    • 44 King DT, Worrall LJ, Gruninger R, Strynadka NC. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc. 134(28), 11362–11365 (2012).
    • 45 Wang Z, Fast W, Valentine AM, Benkovic SJ. Metallo-beta-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3(5), 614–622 (1999).
    • 46 Zhu K, Lu J, Ye F et al. Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1. Biochem. Biophys. Res. Commun. 431(1), 2–7 (2013).
    • 47 Chen J, Chen H, Zhu T, Zhou D. Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study. Phys. Chem. Chem. Phys. 16(14), 6709–6716 (2014).
    • 48 Kazmierczak KM, Rabine S, Hackel M et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60(2), 1067–1078 (2015).
    • 49 Makena A, Brem J, Pfeffer I et al. Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability. J. Antimicrob. Chemother. 70(2), 463–469 (2015).
    • 50 Kaase M, Nordmann P, Wichelhaus TA et al. NDM-2 carbapenemase in Acinetobacter baumanii from Egypt. J. Antimicrob. Chemother. 66(6), 1260–1262 (2011).
    • 51 Khan AU, Rehman MT. Role of nonactive-site residue Trp-93 in the function and stability of New Delhi metallo-β-lactamase 1. Antimicrob. Agents Chemother. 60(1), 356–360 (2016).
    • 52 Groundwater PW, Xu S, Lai F et al. New Delhi metallo-β-lactamase-1: structure, inhibitors and detection of producers. Future Med. Chem. 8(9), 993–1012 (2016).
    • 53 Khan AU, Maryam L, Zarrilli R. Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 17(1), 101 (2017). • Gives comparative data of the 17 NDM variants.